skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tian, Yifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Representing knowledge graphs (KGs) by learning embeddings for entities and relations has led to accurate models for existing KG completion benchmarks. However, due to the open-world assumption of existing KGs, evaluation of KG completion uses ranking metrics and triple classification with negative samples, and is thus unable to directly assess models on the goals of the task: completion. In this paper, we first study the shortcomings of these evaluation metrics. Specifically, we demonstrate that these metrics (1) are unreliable for estimating how calibrated the models are, (2) make strong assumptions that are often violated, and 3) do not sufficiently, and consistently, differentiate embedding methods from each other, or from simpler approaches. To address these issues, we gather a semi-complete KG referred as YAGO3-TC, using a random subgraph from the test and validation data of YAGO3-10, which enables us to compute accurate triple classification accuracy on this data. Conducting thorough experiments on existing models, we provide new insights and directions for the KG completion research. Along with the dataset and the open source implementation of the models, we also provide a leaderboard for knowledge graph completion that consists of a hidden, and growing, test set, available at https://pouyapez.github.io/yago3-tc/. 
    more » « less
  3. Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base. 
    more » « less